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Abstract

We build the new dynamics based on ternary mapping between outer- and inner- mo-
menta. In polar representation the inner- and outer- momenta obey the Jacobi and the
Weierstrass equations, correspondingly. The theory is constructed in 4D space with Eu-
clidean metric which possesses an advantage to build ternary mapping three vectors onto
one. This remarkable property allows one to construct a tensorial form of the evolution
equations for inner- and outer- momenta. The Hamilton-Jacobi equations are derived, the
analogues of Klein-Gordon and Maxwell equations for triple fields are formulated.

Introduction
In the present contribution we give a sketch of the theory which is natural extension of the

relativistic electrodynamics. The algebraic structure of this mechanics is characterized by three-
order polynomial. The mechanics deals with the triplet of energies. The earlier publications on
the subject the reader may find in Refs.[1] where the following conclusions had been derived:
(a) the relativistic mechanics deals with some special system which contains the pair of energies;
(b) the dynamics is described by two sets of the momenta which are inter-related as coefficients
and eigenvalues of the quadratic polynomial. These sets of momenta were named as outer- and
inner-momenta of the particle, correspondingly. The equations for outer- and inner- momenta
complement each other and together can be formulated as Heisenberg equations for a finite (four-
) dimensional quantum system. This formulation serves as a heuristic starting point in order to
extend the frames of the classical relativistic mechanics. As a direct extension of this scheme we
build the new dynamics based on ternary mapping between outer- and inner- momenta. In polar
representation the inner- and outer- momenta obey the Jacobi and the Weierstrass equations,
correspondingly. The theory is constructed in 4D space with Euclidean metric which possesses
an advantage to build ternary mapping three vectors onto one. The novelties are the cubic
order Hamilton-Jacobi equations, cubic order Klein-Gordon equation and generalized Maxwell
equations with triple fields.

1 Two sets of momenta of the relativistic particle

Let us emphasize that one of the important features of the relativistic dynamics of charged
particle is that this dynamics is formed by the pair of energies. These quantities are eigenvalues
of the quadratic polynomial which, if the energy is referenced from the internal energy Mc2, is
is reduced to the mass-shell equation. The coefficients of this polynomial form a set of outer-
momenta, the eigenvalues form another set of the squared momenta denominated as inner-
momenta of the relativistic particle. Thus, the dynamics can be represented by two kinds
of equations corresponding to these two sets of momenta. Evolution equations in terms of
outer-momenta are nothing else than the Lorentz-force equations. Equations in terms of the
inner-momenta are formulated in 4D space (not space-time) in the basis of quaternion algebra.
Equations for the outer-momenta are consequence of the equations for inner-momenta.

Consider a motion of the relativistic particle with charge e in the external electromagnetic
fields �E and �B. The relativistic equations of motion with respect to the proper time τ are given
by the Lorentz-force equations [2]:

d�P

dτ
=

e

mc
�E P0 +

e

m
[�P × �B]),

dP0

dτ
=

e

mc
(�E · �P ), (1.1)
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d�r

dτ
=

�P

m
,

dt

dτ
=
P0

mc
. (1.2)

These equations imply the first integral of motion

P 2
0 − P 2 = M2c2. (1.3)

In the case of stationary potential field, i.e. when e �E = −�∇V (r), the equations imply the other
constant of motion, the energy of the relativistic particle

E = cP0 + V (r). (1.4)

Correspondence with the non-relativistic equations gives an interpretation of the constant of
motion M2 as a squared mass of the particle. One of the important features of the relativistic
dynamics of charged particle is that this dynamics is formed by the pair of energies:

p2 =
p2

2m
= cP0 −Mc2, q2 =

q2

2µ
= cP0 +Mc2. (1.5)

The first one in the non-relativistic limit this value is transformed into kinetic energy of the
Newtonian particle. These energies form the set of eigenvalues of the quadratic polynomial

X2 − 2cP0 X + c2P 2 = 0, P 2
0 ≥ P 2 ≥ 0. (1.6)

Two solutions of Eq.(1.6) distinct with the sign of mass. The quantities q, µ are given in units
of the energy. By using Vieta’s formulae from (1.3) and (1.5) we come to the following mapping
between inner and outer momenta

c2P 2 = p2q2, cP0 =
1
2
(q2 + p2), Mc2 =

1
2
(q2 − p2). (1.7)

At the rest, P = 0, P0 = mc and p = 0, the q-kinetic energy becomes cP0 + mc2 = 2mc2. In
the sequel, we propose define µ as the value of q at the rest: q(p = 0) = µ. Then the previous
equality gives µ = 4mc2. The dynamic equations for the inner momenta are:

(a)
dp

dτ
= e(�n · �E)

q

µ
, (b)

dq

dτ
= e(�n · �E)

p

m
, (c)

d�r

dτ
= �n

p

m

q

µ
. (1.8)

In the case of stationary potential field Eqs.(1.8) imply two constants of motion each of which
has a form of Newtonian energy:

Ep =
p2

2m
+ V (r), Eq =

q2

2µ
+ V (r).

This form of the energies prompts an idea that Eqs.(1.8) admit partition into two Newtonian
equations. In fact, by replacing the parameter of evolution τ by tp, where µdtp = qdτ , or by ρ
satisfying mdρ = pdτ , correspondingly, equations (1.8) are reduced into

(a)
dp

dtp
= −dV (r)

dr
,
dr

dtp
=

p

m
; (b)

dq

dρ
= −dV (r)

dr
,
dr

dρ
=
q

µ
. (1.9)

One may identify p, Ep and q, Eq with the momentum - energy of the p- and q-carriers, respec-
tively. Dynamic equations for the coupled p- and q- carriers written with respect to unique time
are given by Eqs.(1.8). So, within the scope of the present terminology, the p- and q- particles
mean two states of the relativistic particle. These states in the experiment are observed as
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a particle, or an anti-particle. In the present picture one may explicitly observe a succession
between relativistic and Newtonian mechanics, where p-particle play a role of the successor.

The present scheme can be developed in a covariant form. One of the covariant formulations
can be done in spinorial form [3]. Obviously, in this case the scheme will loose its physical
sense in contrary to the one dimensional case. In the sequel the spinorial formulation had been
extended within the twistorial formulation where the p, q-sub-particles have been presented as
some massless particles [4]. However, as it has been shown in Refs.[5] the full theory can
be formulated only in 4D Euclidean space. For a physicist the 4D-euclidean space is more
attractive than the 3D-Euclidean space. One of the advantages of the former is connection
with the SU(2) group and the quaternionic calculus. In fact, the basic spin of the nature, spin
one-half, is described by SU(2) group which closely related with 4D-Euclidean space because
the isomorphism between SU(2) ⊗ SU(2) and SO(4) groups. Thus, the adequate mathematical
tool in 4D space is the quaternion algebra. Define quaternions of the inner momenta by

p = {p4 + (�κ · �p)}, q = {q4 + (�κ · �q)}.
In the quaternionic basis the mapping (1.7) is extended as follows

P0 =
1
2
(pp̄ + qq̄), M =

1
2
(qq̄ − pp̄), P = pq. (1.10)

In order to formulate all equations in the basis of quaternions the electromagnetic fields also
should be represented in the quaternionic basis. Define two quaternions

B = B4 + (�κ · �B), E = E4 + (�κ · �E).

The motion inside electric and magnetic fields in terms of the inner-momenta are described by
the following equations

d

dτ
p =

e

2m
( q̄E + [Bp − pB] ) ,

d

dτ
q =

e

2m
( Ep̄ + [qB − Bq] ). (1.11)

From these equations the following equations for the outer-momenta are derived

d

dτ
P =

e

2m
([BP − PB] + 2E P0) ,

d

dτ
P0 =

e

m

(
(�E · �P ) + E4P4

)
, (1.12)

with the first integral
P 2

0 − �P 2 − P 2
4 = M2. (1.13)

That is the de-Sitter surface equation imbedded in 5D momentum space.

2 Maxwell field equations in 4D space

In 4D-space in the basis of quaternion algebra the Maxwell equations is given by the following
system of equations

(
∇4 − (�κ · �∇)

)
H − 1

c

∂

∂t
E = (�κ ·�j),

(
∇4 + (�κ · �∇)

)
E − 1

c

∂

∂t
H = −ρ.

For our purpose it is necessary to formulate the Maxwell equations in 4D-space in tensorial
form. The strengths Ek, Bmn are 4D-analogues of the electric and magnetic fields. As in the
case of ordinary electromagnetic fields, the electric field strength is represented by the 4D-vector
whereas the magnetic part is given by bi-vector. The Maxwell field equations are given by the
following system

(a) ∂t Ek − 1
2
εklmn∂lBmn = −jk, (b) ∂t Bmn = −εmnkl∂kEl. (2.1)
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These equations have to be complemented with the equations meaning an existence of the electric
charge and an absence of the magnetic charges:

(a) ∂lEl = ρ, (b) ∂mBmn = 0. (2.2)

The strengths Ek, Bmn have conventional potential representation:

El = −∂tAl − ∂lφ, Bmn =
1
2
εmnkl(∂kAl − ∂lAk), l,m, n = 1, 2, 3, 4. (2.3)

Within potential representation (2.3) Eq.(2.1b) are transformed into identity. Under the condi-
tion of Lorentz-gauge equations ∂tφ + ∂kAk = 0, Eq.(2.1a) is reduced into the wave equations
for the potentials

(∂2
t − ∂2

r )φ = ρ, (∂2
t − ∂2

r )Al = jl, l = 1, 2, 3, 4. (2.4)

Define the vector of momentum density, analogue of the Pointing vector, and the energy density

Πk = εklmnElBmn, Π0 =
1
2
(E2 +B2), E2 = EkEk, B

2 =
1
2
BmnBmn. (2.5)

They obey the continuity equation

∂tΠ0 + ∂kΠk = 0. (2.6)

One may notice, that the Maxwell equations formulated above are nothing else than the Maxwell
equations in five dimensional space-time [7].

3 Mechanics with Cubic Characteristic Polynomial

3.1 Evolution equations for inner momenta.
In the previous section we have seen that the one dimensional relativistic equations of motion

can be decomposed into two Newtonian equations with different evolution parameters. Inversely,
two Newtonian equations can be coupled into one relativistic equation. In this section we
generalize this scheme to the case of three coupled equations. Consider set of three Newtonian
equations written with respect to different evolution parameters

(a)
dp

dtp
= −dV (r)

dr
,
dr

dtp
=

p

m
; (b)

dq

dlq
= −dV (r)

dr
,
dr

dlq
=
q

µ
; (c)

dh

dlh
= −dV (r)

dr
,
dr

dlp
=
h

ν
,

(3.1)
where the parameters of evolution lq, lh are taken in unit of distance. The momenta q, h and
the mass-parameters µ, ν have units of the energy. The momentum p has to be proportional
to the physical momentum of the particle P , which is proportional to the velocity. Hence p has
to be equal to zero at the rest. The momentum p closely related with the kinetic energy of the
particle whereas the momenta q, h are related with the internal energy. At the rest p = 0 and
q(p = 0) = µ, h(p = 0) = ν.

Now we are seeking the set of three equations written with respect to unique parameter of
evolution. The desired system of equations is given by

(a)
dp

ds
= −dV (r)

dr

q

µ

h

ν
; (b)

dq

ds
= −dV (r)

dr

p

m

h

ν
; (c)

dh

ds
= −dV (r)

dr

p

m

q

µ
; (d)

dr

ds
=

p

m

q

µ

h

ν
. (3.2)

In the case of stationary potential field Eqs.(3.2) imply three constants of motion, triplet of
energies:

Ep =
p2

2m
+ V (r), Eq =

q2

2µ
+ V (r), Eh =

h2

2ν
+ V (r)
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By replacing the parameter of evolution s by tp, lq, lh according to the rules

ds
qh

µν
= dtp, ds

ph

mν
= dlq and ds

pq

mµ
= dlh.

we come from Eq.(3.2a,b,c) into Eq.(3.1a,b,c). There exist a correspondence between equations
(3.2a,b,c) and equations (1.8). In fact, by replacing the parameter of evolution in (3.2a,b) by
dsh

ν = dτ, we come to Eqs.(1.8). Notice, equations (3.2a,b,c) formally can be transformed into
differential equations for Jacobi elliptic functions:

(a)
d

dϕ

p√
mµ

=
q

µ

h

ν
, (b)

d

dϕ

q

µ
=

p√
mµ

h

ν
, (c)

d

dϕ

h

ν
=
µ

ν

p

m

q

µ
,
dϕ

ds
=

1√
mµ

dV

dr
.

Then the solutions are expressed via Jacobi elliptic functions

sc(ϕ, k) =
p√
mµ

, nc(ϕ, k) =
q

µ
, dc(ϕ, k) =

h

ν
, k2 =

µ

ν
.

3.2 Evolution equations for outer momenta.
Now, we shall explore the following task:

define the mapping from the set of inner-momenta onto the set of outer-momenta. Evidently, in
quality of the inner-momenta we consider the set of variables p, q, h. The main problem is now
to define the set of outer-momenta [6].

The momentum by its definition has to be proportional to the velocity (3.2d). Following this
principle we obtain the first member of the desired set of outer momenta:

P = m
dr

ds
= p

q

µ

h

ν
. (3.3)

For the next calculations we shall use the variables

p2 =
p2

2m
, q2 =

q2

2µ
, h2 =

h2

2ν
.

Define triple product of the squares

P = p2q2h2 = P 2 µν

8m
= P 2 νc

2

2
, because µ = 4mc2. (3.4)

Evolution equations for the squares of the quantities p, q,h are

d

ds
p2 =

d

ds
q2 =

d

ds
h2 =

e

m
(P kEk). (3.5)

For the sake of convenience let us consider the evolution with respect to parameter ψ defined by

dψ = eE

√
8

mµν
ds = E

e

mc

√
2
ν
ds,

where E is projection of the vector of electric field on the direction of motion. Re-write Eqs.(3.5)
as follows

dp2

dψ
=
dq2

dψ
=
dh2

dψ
= P. (3.6)

By using these equations calculate the derivative of P2 with respect to ψ. The result label by

2
2P0 by introducing a new quantity

2P0 =
1
2
(p2q2 + q2h2 + h2p2). (3.7)
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Further, evaluate the derivative of
2
P0. The result is given by P 1

P0, where

1P0 =
1
3
(p2 + q2 + h2). (3.8)

The next differentiation of
1P0 brings up the system of equations for the set of variables {P, 1P0,

2P0}:

dP
dψ

=
2
P0,

d
2P0

dψ
= 3 P 1

P0,
d

1P0

dψ
= P. (3.9)

The set of formulae (3.4), (3.7), (3.8) form the desired mapping from the triplet of variables

{p2, q2, h2} onto the triplet of variables {P, 1
P0,

2
P0}. Notice this mapping is nothing else than

the set of Vieta’s formulae for the cubic polynomial

X3 − 3
1
P0 X

2 + 2
2
P0 X − P2 = 0. (3.10)

The system of equations (3.9) admits two first integrals of motion

R1 = −2
2
P0 + 3(

1
P0)2, R0 = (

1
P0)3 −R1

1
P0 − P2. (3.11)

By using the constants of motion one may present solution of Eqs.(3.9) as an integral. From
(3.9) and (3.11) it follows

d
1
P0

dψ
=

√
4(

1P0)3 − 4R1

1P0 − 4R0, ψ =
∫

dy√
4y3 − 4R1y − 4R0

.

Consequently, the solution
1P0 = ρ(ψ; 4R1, 4R0) is expressed via Weierstrass elliptic function [8].

In conclusion of this section let us re-write Eqs.(3.9) with respect to the parameter of evolu-
tion s:

dPk

ds
=

e

mc2
2
ν
Ek

2
P0,

d
2P0

ds
= 3

e

m
(EkPk)

1
P0,

d
1P0

ds
=

e

m
(EkPk). (3.12)

4 Tensorial form of dynamic equations for triple of inner and

outer momenta

4.1 Properties of the ternary mapping in 4D Euclidean space
In the previous section we established the mapping only between the lengths of the momenta.

Now we shall extend this scheme within the framework of tensorial calculus. Noteworthy, the
4D Euclidean space possesses an advantage to build ternary mapping from three vectors onto
one vector. In this section we shall use this relevant feature of the 4D Euclidean space. Firstly,
consider the following mapping

P k = εklmnplqmhn, k, l,m = 1, 2, 3, 4.

This composition law yet does not satisfy to our purposes because the square of the resulting
vector cannot be presented as a product of the squares of the three vectors. For that purpose
we extend this composition law as follows

Pk = εklmnplqmhn + pk(q · h) + qk(h · p) − hk(p · q) (4.1)

Then, by direct calculations it can be proved the following Theorem holds true:
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The squared length of the vector Pk is equal to ternary product of the squared length of the
vectors pl, qm,hn, i.e.,

P2 = p2q2h2. (4.2)

4.2 Evolution equations for internal and external momenta inside magnetic fields.
The dynamic equations for inner- and outer-momenta formulated in Section 3 have been

stuck to the direction of motion. The purpose of this section is to release these equations of
motion from the elected direction. The main results of this section are given by two systems of
equations, first, for the inner momenta, and the second, for the outer momenta. The equations
for the inner- momenta are given by the following system of equations

d

ds
pl =

e

2mc
(

√
2
ν

( εalbcEaqbhc + El(h · q) + hl(E · q) − ql(E · h) ) + εklmnplBmn ) (4.3a)

d

ds
qm =

e

2mc
(

√
2
ν
( εabmcEapbhc + hm(E · p) + Em(p · h) − pm(E · h) ) + εklmnqlBmn ) (4.3b)

d

ds
hn =

e

2mc
(

√
2
ν

( εabcnEapbqc + qn(E · p) + pn(E · q) − En(q · p) ) + εklmnhlBmn ) (4.3c)

From this system the following system of equations for the outer- momenta is derived

d

ds
P k =

e

m
Ek 2P0

2
νc2

+
e

2m
εklmnPlBmn, k = 1, 2, 3, 4. (4.4)

The magnetic field does not produce a work therefore this force is given by orthogonal to the
momentum expression. The structure of the ponder-motive force produced by magnetic field B
in the equations are defined via operation of the vector product which is defined by using the
ε-tensor. The analogue of the formula [�p × �H]k = εklmplHm, k, l,m = 1, 2, 3; in 4D-space is
εklmnplBmn, k, l,m = 1, 2, 3, 4.

5 Analogues of Hamilton-Jacobi and Klein-Gordon equations

Now let explore a important task on existence of Hamilton-Jacobi formulation of the dynamic
equations (4.4. The following Theorem holds true:

Let s = s(t, r1, r2, r3, r4), and suppose that the momentum does not depend explicitly of s, so
that,

d

ds
Pk =

dt

ds

∂

∂t
Pk +

drl
ds

∂

∂rl
Pk, k = 1, 2, 3, 4. (5.1)

Then within the definitions

1P0 = −∂tS − eφ, Pk = ∂kS − eAk (5.2)

Eqs.(4.6) are transformed into an identity.
Now by substituting formulae

1P0 = −∂tS − eφ, Pk = ∂kS − eAk

into the cubic polynomial equation (3.11), and remembering (3.4),we come to the Hamilton-
Jacobi equation for the function S:

(−∂S
∂t

− eφ)3 −R1(−∂S
∂t

− eφ) − νc2

2
(
∂S

∂rk
− eAk)(

∂S

∂rk
− eAk) = R0. (5.10)
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Analogue of Klein-Gordon equation.
As soon as we found the Hamilton-Jacobi equation, by using conventional correspondence

formulae between Hamilton-Jacobi and Klein-Gordon equations we are able to postulate an
analogue of the Klein-Gordon equation:

( (ih̄
∂

∂t
− eφ)3 −R1(ih̄

∂

∂t
− eφ) − νc2

2
(−ih̄ ∂

∂rk
− eAk)(−ih̄ ∂

∂rk
− eAk) )Ψ = R0 Ψ. (5.11)

6 Electromagnetic fields with triple strengths

Formula (2.5) for the energy density Π0 is quite similar to the formula for P0 in (1.7). The
difference is that in (2.5) one deals with the density of the energy. In Section 3 we extended the
formula (1.7) to the three terms (formula (3.8)). This analogue leads us to the idea to seek field
equations for triple fields, the energy density of which are defined as the sum of the energies of
the three fields: El, Bm,Kn, l,m, n = 1, 2, 3, 4.

We postulate the following analogue of the Maxwell equations for the triple strengths:

∂

∂t
El =

1
2
εklmn∂k(BmKn),

∂

∂t
Bm =

1
2
εklmn∂k(ElKn),

∂

∂t
Kn = λ2 1

2
εklmn∂k(ElBm). (6.1)

The following Proposition holds true:
Let the field equations for E,B,K are given by Eqs.(6.1) where the energy and the momentum
densities are defined by

Π0 =
1
2
( E2 + B2 +

1
λ2

K2), Πk = εklmnElBmKn. (6.2)

Then the quantities Π0, Πk, k = 1, 2, 3, 4 obey the following continuity equation

∂

∂t
Π0 = (∇kΠk). (6.3)

In order to obtain some correspondence with the Maxwell equations (2.1) tend λ2 to zero. Then
Kn does not depend of t explicitly. Furthermore, suppose Kn is a gradient of some scalar function
Φ(x1, x2, x3, x4), so that,

Kn = ∂nΦ, with, (∂lΦ)(∂lΦ) = 4. (6.4)

Then Eqs.(6.1a,b) are reduced as follows:

(a)
∂

∂t
Ek =

1
2
εklmn∂lBmn + jk, (b)

∂

∂t
Bm =

1
2
εklmnKl∇k(El), (6.5)

where
Bmn =

1
2
(KmBn − BmKn). (6.6)

From the second equation of Eqs.(6.5) it follows

∂

∂t
(BmKm) = 0. (6.7)

i.e, BmKm does not depend of time. From (6.6) and (6.7) we get

2∂t Bm = −∂t (BmnKn). (6.8)

Combination (6.5b) with (6.8) gives

Kn
∂

∂t
Bmn = −εmnklKn∂kEl. (6.9)
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If in the equation (6.4) we do not fix boundary conditions, then Kn remains arbitrary, conse-
quently Eq.(6.9) is reduced to Eq.(2.1b).

Conclusions
We presented a new generalization of the relativistic dynamics of the charged particle. The

covariant equations of motion are formulated in 4D-space which possesses an advantage to use
quaternion or tensorial analysis. The new dynamic equations admit Hamilton-Jacobi formulation
which is important in order to build a quantum analogue of the dynamics. An essential ingredient
of the theory is field equations for new kind of electromagnetic fields with triple strengths.
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